Biotechnological Exploration of Transformed Root Culture for Value-Added Products
نویسندگان
چکیده
Hairy roots are useful tools for studying the biosynthesis of different plant-derived valuable compounds.Hairy could be preferred hosts when desired compounds mainly accumulate in roots.Hairy being considered as an alternative system to microbial hosts, including Escherichia coli and Saccharomyces cerevisiae, producing natural secondary metabolites because they more similar native host plant.Hairy have emerged rapid characterization plant gene function enzyme activity vivo hairy naturally maintain many cofactors precusor substrates, encoded protein is likely properly folded compared with microbes. Medicinal plants produce anticancer, analgesic, anticholinergic or other activities, but low metabolite levels limited available tissue restrict yields. Transformed root cultures, also called roots, provide a feasible approach metabolites. Various strategies been used enhance production increasing substrate availability, regulating key biosynthetic genes, multigene engineering, combining genetic engineering elicitation, using transcription factors (TFs), introducing new genes. In this review, we focus on recent developments from medicinal plants, techniques boost metabolites, development technologies study these We discuss trends, emerging applications, future perspectives. numerous functionally diverse (see Glossary), terpenoids, phenylpropanoids, alkaloids. Many great pharmaceutical importance. For instance, some alkaloids anticancer (i.e., camptothecin, taxol, vinblastine), analgesic morphine codeine), properties atropine scopolamine) [1.Carqueijeiro I. et al.Beyond semi-synthetic artemisinin: metabolic anti-cancer drugs.Curr. Opin. Biotechnol. 2020; 65: 17-24Crossref PubMed Scopus (23) Google Scholar, 2.Li F.S. Weng J.K. Demystifying traditional herbal medicine modern approaches.Nat. Plants. 2017; 3: 17109Crossref (135) 3.Srinivasan P. Smolke C.D. Engineering platform de novo tropane alkaloids.Nat. Commun. 2019; 10: 3634Crossref (37) Scholar]. Ginsenosides antiaging, antioxidative, adaptogenic, [4.Nag S.A. al.Ginsenosides agents: vitro structure–activity relationships, molecular mechanisms action.Front. Pharmacol. 2012; 25Crossref (237) two doses ginseng (1000 2000 mg/day) efficiently decreased cancer-related fatigue Tanshinones (diterpenoids) salvianolic acids (phenylpropanoids) treat cardiovascular cerebrovascular diseases due their anti-inflammatory, antibacterial, antioxidant, cytotoxic, [5.Shi M. al.Bioactivities, biotechnological phenolic Salvia miltiorrhiza.Crit. Rev. Food Sci. Nutr. 59: 953-964Crossref (101) Moreover, sesquiterpene artemisinin effective antimalarial drug [6.Ma Y.N. al.Jasmonate promotes by activating TCP14-ORA complex Artemisia annua.Sci. Adv. 2018; 4eaas9357Crossref (42) Despite structures properties, precursors all compounds, such phosphoenolpyruvate (PEP), shikimate, pyruvate, acetyl-CoA, derived common glycolytic pathway (Figure 1). Subsequently, variety biosynthesized pathways. Terpenoids (otherwise known isoprenoids), class ~50 000 structures, produced via cytosolic mevalonate (MVA) plastidial methylerythritol phosphate (MEP) pathways [7.Ashour al.Biochemistry terpenoids: monoterpenes, sesquiterpenes diterpenes.Annual Plant 2010; 40: 258-303Google Scholar,8.Liao al.The potential enhanced isoprenoid production.Biotechnol. 2016; 34: 697-713Crossref (107) Sesquiterpenoids (artemisinin) triterpenoids (ginsenosides) MVA Scholar,9.Kim Y.J. al.Biosynthesis ginsenosides.Biotechnol. 2015; 33: 717-735Crossref (193) 10.Zhao S. al.Both non-mevalonate involved ginsenoside biosynthesis.Plant Cell Rep. 2014; 393-400Crossref (50) 11.Schramek N. ginsenosides field-grown Panax ginseng.JSM Bioeng. 2: 1033Google Scholar], whereas diterpenoids tanshinones taxol) monoterpenoids (limonene) primarily synthesized MEP [8.Liao Scholar,12.Dudareva al.Biosynthesis, volatile organic compounds.New Phytol. 2013; 198: 16-32Crossref (684) Representative alkaloids, vinblastine tryptophan, shikimate pathway, secologanin monoterpenoid Scholar,13.Caputi L. al.Missing enzymes Madagascar periwinkle.Science. 360: 1235-1239Crossref (133) 14.Dang T.T.T. al.Dual catalytic cytochrome P450 controls bifurcation at branch point alkaloid Rauwolfia serpentina.Angew. Chem. Int. Ed. Engl. 56: 9440-9444Crossref (21) 15.Sadre R. al.Metabolite diversity biosynthesis: multilane (Diastereomer) highway camptothecin synthesis Camptotheca acuminata.Plant Cell. 28: 1926-1944Crossref (64) 16.Qu Y. al.Completion canonical assembly drugs vincristine/vinblastine Catharanthus roseus.Plant J. 97: 257-266Crossref (43) Phenylpropanoids, acids, anthocyanin, catechin, phenylalanine tyrosine, which present planta, Furthermore, only specific tissues [9.Kim Scholar,17.Sun M.H. positively regulated JA responsive ERF115 miltiorrhiza.J. Exp. Bot. 70: 243-254Crossref (67) tanshinones, ginsenosides, flavones miltiorrhiza, ginseng, Scutellaria baicalensis, respectively Scholar,18.Kai G.Y. al.Metabolic tanshinone miltiorrhiza cultures.Metab. Eng. 2011; 13: 319-327Crossref (187) Scholar,19.Zhao Q. al.A specialized flavone has evolved plant, baicalensis.Sci. 2e1501780Crossref (94) Vinblastine vincristine exclusively aerial parts catharanthine accumulates organs roseus [20.Schweizer F. al.An engineered combinatorial module boosts indole roseus.Metab. 48: 150-162Crossref (32) Glandular secretory trichomes annua leaves ‘biofactories’ accumulation The sources often grow slowly very small quantities over extended growth periods (several years) before can harvested [21.Atanasov A.G. al.Discovery resupply pharmacologically active products: review.Biotechnol. 1582-1614Crossref (1232) addition, various ecological environments bacterial pesticide residues, leading degradation quality [22.Normile D. Asian medicine: face Chinese medicine.Science. 2003; 299: 188-190Crossref (504) Scholar,23.Zhang J.H. al.Quality medicines: challenges solutions.Complement. Ther. Med. 20: 100-106Crossref (180) Therefore, it important explore methods beneficial compounds. genetically transformed cultures (so-called ‘hairy roots’) represents good target plants. faster than adventitious even conventional [24.Paek K.Y. al.Large scale culture ginsenosides.Adv. Biochem. 2009; 113: 151-176PubMed Scholar,25.Yu K.W. al.Ginsenoside ginseng: influence temperature light quality.Biochem. 2005; 23: 53-56Crossref Scholar] higher certain native-grown [18.Kai Scholar,26.Hao X.L. al.Tanshinone acid SmMYB98 roots.J. Res. 1-12Crossref (45) Scholar,27.Miao G. MDR transporter contributes extracellular pyridine between liquid Tripterygium wilfordii Hook.f.Plant Mol. Biol. 95: 51-62Crossref (13) total content reached up 15.4 mg/g dry weight (DW) transgenic had 1.7–9.7 DW wilforine was significantly Hook.f. [27.Miao novel bioactive not (or tissues). cadaverine triterpene saponins found Brugmansia candida Medicago truncatula respectively, perhaps resulting transformation stress, were identified intact [28.Carrizo C.N. al.Occurrence candida.Phytochemistry. 2001; 57: 759-763Crossref (19) Scholar,29.Pollier profiling chromatography Fourier transform ion cyclotron resonance mass spectrometry.J. Nat. Prod. 74: 1462-1476Crossref (71) excellent model systems identifying genes TFs rapidly characterizing function. modified, thereby allowing modulation through genome editing. Finally, artificially designed unnatural blocking biotransformation original precursor RNAi genome-editing combined feeding exogenous substrates. example, several fluorinated fluoro-ajmalicine, fluoro-serpentine, fluoro-catharanthine, fluoro-tabersonine, C. tryptamine suppressed RNA silencing tryptophan decarboxylase starting 5-fluorotryptamine [30.Runguphan W. al.Silencing nonnatural culture.Proc. Natl. Acad. U. A. 106: 13673-13678Crossref (83) offer benefits that microbes, Other applications include high-value proteins, therapeutic vaccines, antimicrobial peptides [31.Cardon al.Brassica rapa based expression leads highly homogenous reproducible profiles recombinant human alpha-L-iduronidase.Plant 17: 505-516Crossref 32.Chahardoli al.Recombinant bovine Lactoferrin-derived peptide tobacco system.Plant Physiol. 123: 414-421Crossref 33.Massa al.Bioproduction vaccine against Papillomavirus tomato cultures.Front. 452Crossref (10) These farming, regeneration [34.Shasmita al.Exploring Withania somnifera (L.) Dunal: propagation production.Crit. 38: 836-850Crossref (12) Scholar,35.Butler N.M. al.First generation editing potato transformation.Plant (Published online March 14, 2020. https://doi.org/10.1111/PBI.13376)Crossref introduction steps and/or form [36.Runguphan al.Integrating carbon-halogen bond formation into metabolism.Nature. 468: 461-464Crossref (162) To date, generated hundreds Taxus × media, roseus, Ophiorrhiza pumila, (L.), Isatis indigotica, Anisodus acutangulus, Atropa belladonna, well non-medicinal species, (Solanum tuberosum), soybean (Glycine max), (Nicotiana tabacum), cotton (Gossypium hirsutum), grape (Vitis vinifera; Table 1) applications. Early research methods, conditions, use bioreactors, reviewed elsewhere [37.Banerjee al.Biotransformation studies - 30: 461-468Crossref (84) 38.Georgiev M.I. al.Genetically roots: disease resource.Trends 528-537Abstract Full Text PDF (134) 39.Hidalgo al.Tailoring metabolism stilbenes.Sci. 7: 17976Crossref (9) 40.Thakore al.Mass ajmalicine bioreactor cultivation roseus.Biochem. 119: 84-91Crossref 41.Valdiani al.Bioreactor-based advances cell culture: prospects.Crit. 39: 20-34Crossref (27) 42.Jeziorek al.Hairy naphthoquinone compounds.Curr. 25: 4718-4739Crossref 43.Pan Q.F. al.Monoterpenoid its regulation roseus: literature review metabolites.Phytochem. 15: 221-250Crossref (98) Here, strategies, elicitors newly Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) technology, proteomics metabolomics functions address prospects ‘green factories’ plant-based systems).Table 1Selected Secondary Metabolites Produced Root Cultures SpeciesaAbbreviations: 1/2 B5, half-strength B5 solid medium; 1/2MS, Murashige Skoog Gamborg MS, WPM, Woody-plant medium.Metabolite functionPlants speciesStrainExplantCulture medium (liquid)RefsCamptothecinOphiorrhiza pumilaC58C1StemB5[44.Cui L.J. al.Co-overexpression geraniol-10-hydroxylase strictosidine synthase improves pumila.Sci. 5: 8227Crossref (63) Scholar]TanshinonesSalvia miltiorrhizaC58C1Leaf1/2MS[18.Kai Scholar]Phenolic acidsS. miltiorrhizaC58C1Leaf1/2MS[17.Sun Scholar]LariciresinolIsatis indigoticaC58C1Leaf1/2MS[59.Ma R.F. al.AP2/ERF factor, Ii049, regulates lignan indigotica salicylic signaling lignan/lignin genes.Front. 8: 1361Crossref (36) Scholar]HyoscyamineAnisodus acutangulusC58C1Leaf1/2MS[40.Thakore Scholar]ScopolamineAtropa belladonnaC58C1LeafMS[46.Qiu al.Functional genomics analysis reveals required littorine biosynthesis.New 225: 1906-1914Crossref Scholar]Withanoloide AWithania somniferaR1000; ATCC15834Leaf; cotyledonMS[34.Shasmita Scholar]FlavonesScutellaria baicalensisA4LeafB5[19.Zhao Scholar]TaxolTaxus mediaLBA9402; C58C1Leaf; stemB5[92.Exposito O. responses media addition methyl jasmonate.Biotechnol. Prog. 26: 1145-1153PubMed Scholar]RheinPolygonum multiflorumR1601LeafMS[93.Huang B. al.Optimal inductive cultural conditions Polygonum multiflorum mediated Agrobacterium rhizogenes R1601 anthraquinone constituents.Pharmacogn. Mag. 77-82Crossref (11) Scholar]ScutellarinErigeron breviscapusC58C1LeafB5[94.Chen al.Integrated transcript reveal EbCHI plays role scutellarin Erigeron breviscapus roots.Front. 9: 789Crossref (5) Scholar]SalidrosideRhodiola crenulataC58C1Leaf1/2MS[95.Lan X. al.Engineering salidroside Rhodiola crenulata tyrosine decarboxylase.PLoS ONE. 8e75459Crossref (41) Scholar]GinsenosidePanax ginsengA4Root1/2MS[96.Zhang al.Enhancement Rg1 overexpressing ?-L-rhamnosidase Bifidobacterium breve.Biotechnol. Lett. 37: 2091-2096Crossref (20) Scholar]ParthenolideTanacetum partheniumATCC15834LeafMS[97.Pourianezhad al.Effects parthenolide (TpPTS) Tanacetum parthenium culture.Plant 211-218Crossref (7) Scholar]Chicoric acidEchinacea purpureaR15834LeafWPM[98.Salmanzadeh al.Heterologous phosphatase limitation substantial chicoric Echinacea purpurea roots.Planta. 251: 31Crossref (6) Scholar]Farnesiferol BFerula pseudalliaceaATCC15834Leaf1/2MS[99.Khazaei induction farnesiferol B endemic Ferula pseudalliacea.3 Biotech. 407Crossref Scholar]RishitinSolanum tuberosumATCC15834TuberMS[100.Komaraiah al.Enhanced lipoxygenase elicitor-treated Solanum tuberosum.Biotechnol. 593-597Crossref (38) Scholar]Flavonoids/IsoflavonoidsGlycine maxARqual1Cotyledon, hypocotylsB5[101.Han al.GmMYB58 GmMYB205 seed-specific activators isoflavonoid Glycine max.Plant 36: 1889-1902Crossref (14) Scholar]NicotineNicotiana tabacumATCC15834LeafB5[102.Zhao nicotine Nicotiana tabacum L.Plant Tissue Organ Cult. 121-129Crossref Scholar]GossypolGossypium hirsutumA4LeafB5[103.Verma P.C. al.Efficient gossypol hirsutum L.).Curr. Pharm. 691-700Crossref Scholar]Resistance pathogen infectionVitis viniferaA4StemMS[104.Meteier E. al.Overexpression VvSWEET4 Grapevine increases sugar transport contents enhances resistance Pythium irregulare, soilborne pathogen.Front. 884Crossref Scholar]a Abbreviations: medium. Open table tab metabolites) general precursors. availability factor affecting compound production. achieved manipulation substrates precursors, intermediate products, end products (Table 2). encoding geraniol 10-hydroxylase (G10H), (SLS), phenyllactate UDP-glycosyltransferase, manipulated pumila belladonna [44.Cui 45.Shi al.Targeted committed roots.Ind. Crop. 148: 112277Crossref 46.Qiu Overexpression valerendiene VDS Valeriana officinalis resulted 1.5–4-fold sesquiterpenoid valerenic control [47.Ricigliano V. al.Regulation elicited roots.Phytochemistry. 125: 43-53Crossref Co-introduction DXS (encoding 1-deoxy-D-xylulose-5-phosphate synthase, pathway), GGPPS geranylgeranyl diphosphate middle provides diterpenoid production) yielded high 12.93 DW, 0.61 [48.Shi diterpene bioactivity engineering.J. Agric. 64: 2523-2530Crossref (74) This finding suggests crosstalk exists A strategy phenylpropanoid [49.Xiao c4h, tat, hppr hppd prompted rosmarinic cultures.PLoS 6e29713Crossref (99) Scholar].Table 2Examples Metabolicall
منابع مشابه
Biotechnological Generation of Value Added Products from Spent Pulping Liquors: Assessing the Potential of Extremophiles
Worldwide bio-economy concepts foster the conversion of biomass into a range of food, health, fiber, industrial products, and energy. However, there is a risk that the diversion of farmland or crops for the production of biofuels and bio-based products compromises the food supply-the food versus fuel dilemma. One way to circumvent this dilemma is the use of spent liquors from the pulping indust...
متن کاملBiotechnological production of value-added carotenoids from microalgae
We recently evaluated the relationship between abiotic environmental stresses and lutein biosynthesis in the green microalga Dunaliella salina and suggested a rational design of stress-driven adaptive evolution experiments for carotenoids production in microalgae. Here, we summarize our recent findings regarding the biotechnological production of carotenoids from microalgae and outline emerging...
متن کاملValue Added Products from Oil Shale
Oil shale is more than an energy source. It is also a source for various valuable materials. These materials include pyridine, carbonate minerals, alumina, ammonium sulfate, phosphate, sulfur, uranium, vanadium, and zinc, to name a few, from which numerous value-added products can be manufactured. For example, catalysts are made from vanadium and zinc, while alumina is a widely used material fo...
متن کاملBacterial Carbon Storage to Value Added Products
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract Microorganisms have evolved different systems for storing carbon during times of stress. In the cell's natural environment, the stored carbon can then be utilized for growth when other nutrients are in better supply. Storage of carbon and other nutrients is ubiquitous ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Trends in Biotechnology
سال: 2021
ISSN: ['0167-7799', '1879-3096', '0167-9430']
DOI: https://doi.org/10.1016/j.tibtech.2020.06.012